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Abstract
Background: Microsatellites or single sequence repeats (SSRs) are a powerful choice of marker
in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A
strategy was tested in which the publicly available unigene datasets extracted from genome
sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could
be applied to a wide range of Phytophthora species.

Results: A first approach, aimed at the identification of polymorphic SSR loci common to many
Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were
identified from 16 target species representing the breadth of diversity across the genus. Repeat
number ranged from 3 to 16 with most having seven repeats or less and four being the most
commonly found. Trinucleotide repeats such as (AAG)n, (AGG)n and (AGC)n were the most
common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second
approach was aimed at the identification of useful loci common to a restricted number of species
more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae). This analysis
yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times.

Conclusion: Key studies on inter- and intra-specific variation of selected microsatellites remain.
Despite the screening of conserved gene coding regions, the sequence diversity between species
was high and the identification of useful SSR loci applicable to anything other than the most closely
related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species
other than the three 'source species' (P. infestans, P. sojae and P. ramorum) are reported, offering
great potential for the investigation of Phytophthora populations. In addition to the presence of
microsatellites, many of the amplified regions may represent useful molecular marker regions for
other studies as they are highly variable and easily amplifiable from different Phytophthora species.

Background
The genus Phytophthora, with other Oomycetes, fall within
the kingdom Stramenopila, which also includes golden-
brown algae, diatoms, and brown algae such as kelp [1-4].
This genus stands out among the plant pathogens since a

significant number of the 80 or so described species con-
tinue to prove a threat to ecosystem stability and plant
productivity on a global scale [5-8]. Despite the impor-
tance of Phytophthora species, studies of their molecular
diversity have been limited by the power of the genetic
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markers and difficulties in comparing results among lab-
oratories. Accurate studies based on the analysis of mito-
chondrial and nuclear DNA have resulted in a consensus
of the phylogenetic relationships within the genus with a
grouping into 10 genetically related clades now accepted
[2,3,9]. However, these studies were based on genes com-
monly conserved within a species and therefore unsuita-
ble to characterize intraspecific variability. Other
approaches to study intraspecific variability among Phy-
tophthora species including RAPD-PCR and AFLP have
proved valuable within a particular study but comparing
results from one laboratory to another has always proved
challenging with such fingerprinting tools [10-13].
Although microsatellites or simple sequence repeats
(SSRs) have been recognised as one of the most powerful
choices of markers for molecular ecology they have only
relatively recently been exploited in the study of Phytoph-
thora populations. SSRs are tandemly repeated motifs of
one to six bases which occur frequently and randomly in
all eukaryotic genomes although their frequency varies
significantly among different organisms [14]. They exhibit
a high degree of length polymorphism among related
organisms due to stepwise mutations affecting the
number of repeat units and leading to polymorphism
[14,15]. Dinucleotide repeats account for the majority of
microsatellites for many species whereas trinucleotide
and hexanucleotide repeats are the most likely repeat
classes to appear in coding regions because they do not
cause a frameshift [16,17]. Major advantages SSRs
include: (i) multiple SSR alleles may be detected at a sin-
gle locus using a simple PCR-based screen, (ii) SSRs are
evenly distributed across the genome, (iii) they are co-
dominant, (iv) very small quantities of DNA are required
for screening, (v) analysis may be semi-automated, and
(vi) results are objective compared to random amplifica-
tion methods [18].

Microsatellites have been used to investigate genetic struc-
ture and reproductive biology of Oomycetes species
including Plasmopara viticola, P. cinnamomi, P. infestans,
and P. ramorum [19-21,23-25]. However, a major limita-
tion to their wider exploitation is the need for prior spe-
cies-specific marker isolation that requires knowledge of
the DNA sequence of the SSR flanking regions to which
specific primers have to be designed. Such regions are usu-
ally conserved within a species but the likelihood of prim-
ers successfully working between species decreases with
increasing genetic distance and, in practice, primers are
usually developed anew for each species [25,26]. Com-
mon methods for the discovery of SSR loci are based on
constructing genomic DNA libraries enriched for SSR
sequences. These methods were utilised for P. cinnamomi
and P. ramorum, however they are time-consuming, and
the specific sequencing of DNA libraries required is expen-
sive [20,25]. Many commercial and academic laboratories

specialise in microsatellite isolation services and can pro-
vide a set of polymorphic microsatellite loci for a new spe-
cies in 3–6 months for a cost of approximately USD 1,500
per locus, or USD 10,000 for 10–15 loci [14].

The availability of entire genome sequences for an increas-
ing number of species including P. infestans http://
www.broad.mit.edu/, P. ramorum and P. sojae http://
genome.jgi-psf.org/ have proved novel opportunities to
identify and evaluate potential SSR markers identified by
computational tools (Abajian, 1994, http://espressosoft
ware.com/pages/sputnik.jsp) [27,28]. This approach has
been utilised to identify SSRs for the study of European
and USA populations of P. ramorum and for monitoring
the genetic variation in populations of P. infestans across
Europe and worldwide [23,24,29,30].

Recently, Garnica et al. used an in silico approach to survey
and compare simple sequence repeats (SSRs) in transcript
sequences from the genomes of P. sojae, P. ramorum and P.
infestans [27]. They also evaluated in silico transferability
of SSRs among the Phytophthora species and found that a
proportion (7.5%) of primers could, in theory, be trans-
ferred between at least two of the three species. In the
present study SSRs from P. infestans P. sojae and P. ramo-
rum were analysed to identify useful loci common to
many Phytophthora species (Approach 1) or to a restricted
number of species closely related to P. sojae (Approach 2).
Selected loci were amplified and sequenced from 16
(Approach 1) and 5 (Approach 2) different Phytophthora
species and a comprehensive SSRs dataset was created.

Results
Approach 1 – SSRs for many Phytophthora species
The aim of this approach was to identify loci containing
SSRs common to a large number of Phytophthora species
(Fig. 1A). The method was validated using 16 different
species (Table 1) representing the breadth of diversity
across the genus [2,3].

Analysis of sequences from P. infestans, P. sojae and P. ramorum 
genome projects and scanning for homologous SSRs
Predicted gene datasets from P. infestans http://
www.broad.mit.edu/P. sojae and P. ramorum http://
genome.jgi-psf.org/ were scanned for the presence of mic-
rosatellites defined as short tandem repeat motifs (SSRs)
of 2–6 bp. Both perfect and compound SSRs were selected
with a minimal acceptable length of 10 bp (dinucelotide
motifs) and 12 bp (tri- and tetranucletide motifs). SSRs
with a minimum of three repeats were included in the
analyses of penta-nucleotide repeats. This search yielded
9333 sequences containing SSRs (1465 from P. infestans,
5348 from P. sojae and 2520 from P. ramorum). The rela-
tive abundance of SSRs was 103, 183 and 114 per Mb of
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predicted gene sequence for P. infestans, P. sojae and P.
ramorum, respectively.

Selected regions were compared by BLAST analysis to
identify homologous regions flanking SSRs in at least two
of the three species (P. sojae, P. ramorum and P. infestans).
This analysis identified 4135 SSRs from P. infestans (688),
P. ramorum (1470), and P. sojae (1977). A very limited
number of loci containing SSRs were common to the three
species; most loci were common to P. ramorum and P.
sojae (81.6%), P. infestans and P. ramorum (7%) or P.
infestans and P. sojae (11%). In most of the cases, homol-
ogous loci contained the same SSR motif in different Phy-
tophthoras, however the number of repeats was
consistently higher in the 'source' species than the other
two.

Among the selected loci, the number of SSR repeats
ranged from 3 to 13, from 3 to 12 and from 3 to 17 in P.
infestans, P. ramorum and P. sojae respectively. Most SSRs
showed seven repeats or less (98.2% P. infestans, 97.4% P.

ramorum, 94.4% P. sojae), with a repeat number of four
being the most common in all species.

Selection and amplification of target regions containing SSRs
The 4135 homologous regions previously identified were
manually analysed to select those with the highest
number of repeats and flanked by the most conserved
sequences on both sides. The latter condition was neces-
sary to design primers suitable for as many species as pos-
sible. Based on this analysis 6, 7 and 12 target regions
were identified across the genome of P. infestans, P. ramo-
rum and P. sojae respectively. These regions, containing 8,
17 and 33 SSRs respectively, were selected (Table 2) for
amplification from 16 different species of Phytophthora
representing the breadth of diversity in the genus (Table
1). To this aim, a total number of 62 different degenerate
primers (12 for P. infestans, 18 for P. ramorum, and 32 for
P. sojae) were designed (Table 2). When target regions
contained two or more SSRs and/or were too long to be
amplified by a single amplification, a pool of different
primers was designed (Table 2). Considerable effort was

Table 1: Isolates of Phytophthora included in the study, their designations and origins.

Phytophthora species Isolate numbers Origin

Host Country Year

P. alni subsp. alni SCRP2 Alnus sp. UK 1995
SCRP4(a) Alnus sp. Germany 1995
SCRP8(a) Alnus sp. France 1996

P. cambivora SCRP67 (IMI 296831) Rubus idaeus Scotland 1985
SCRP75(a) Fagus sp. UK 1995
SCRP80(a) Castanea sativa Italy 1995
SCRP82(a) Eucalypt Australia

P. cinnamomi SCRP115 (CBS270.55) Chamaecyparis lawsoniana Netherlands 1993
SCRP118 (CBS342.72) Persea gratissima California 1972
SCRP121(a) Australia

P. citricola SCRP130 Rubus idaeus Scotland 1986
SCRP136(a) Soil UK 1995
SCRP140(a) Taxus sp. UK 1995
SCRP143(a) Quercus robur Germany 1994

P. europaea SCRP622 Quercus robur Switzerland 1995
P. fragariae var. rubi SCRP333 (IMI355974) Rubus idaeus Scotland 1985
P. ilicis SCRP377 Ilex aquilifolium UK 1995

SCRP379(a) Ilex aquilifolium UK
P. infestans SC03.26.3.3 Solanum tuberosum Scotland 2003
P. inundata SCRP644 (IMI389751) Salix sp. UK 1972
P. lateralis SCRP390 (IMI 040503) Chamaecyparis lawsoniana U.S.A. 1942
P. nemorosa SCRP910
P. pseudosyringae SCRP674 (IMI390500) Malus pumila Italy 2001

SCRP734(a) Fagus sylvatica Italy 2003
P. psychrophila SCRP630 Quercus ilex France 1996
P. quercina SCRP541 Quercus robur Germany 1995
P. ramorum SCRP911 Rhododendron sp. Scotland 2004
P. sojae SCRP555 Glycine max USA

(a) = Additional isolates utilised to evaluate intraspecific variability
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made to obtain successful amplification from as many
species as possible. This involved screening of several
primer pairs for each genomic region and for each Phy-
tophthora species (Table 2) and adjustment of annealing

temperatures and MgCl2 concentration for PCR reactions
(Tables 3, 4, 5).

Schematic representation of two different approaches utilised to identify SSRs in a broad range of Phytophthora species (A) or in Phytophthora spp. Clade 7 (B)Figure 1
Schematic representation of two different approaches utilised to identify SSRs in a broad range of Phytoph-
thora species (A) or in Phytophthora spp. Clade 7 (B).
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phthora species (Table 1).
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20 Table 2: Set of primers designed with the 1st approach (Fig. 1A) to amplify genomic regions with candidate SSRs in a broad range of Phyto

Forward primers(a) Reverse primers(a) SSRs(a)

P. sojae S1F
ACGACGTGTCCAAGAACCAC

S3R
ATGTTGACCGTGTTCTGCTG

(CCG)7;(AGC)4; (AGC)14

S4F
AARATGACGTGGACKGAGAG

S5R
TGATSGTGGAGAARCTCATCT

(AAC)14

S6F
GGAGTTCGCCATCAACAACT

S7R
TCAGCTTCTGTCGRTCGAC

(AAG)14

S8F
YGYGTCTCGCCCAYGAC

S9R
GACGACACCGGSGAGAG

(ACC)4;(AGC)4; (AGC)28; (AAC)4

S10F
GCGSTACGAGACCTGGAC

S11R
GACTCRCCCTTCGACTCSTC

(CAG)14

S12F
GGAGGCCGAGTCGGARTA

S13R
TAYTCCGACTCGGCCTCC

(AGC)14

S14F
GACGCMSYYGAGTGGAAAG

S15R
ATTTKGSACAGATACCGACG

(AAG)15

S16F
TCTACGTGAATGCCATGAGG

S17R
CGTTCAGCTTCTGTCGATCR

(AAG)15

S18F
YACCATCTCCAACCTGCTG

S19R
CACCACCTCGAGTAGCTCCC

(AGC)7; (AGG)13

S19F
GGGAGCTACTCGAGGTGGTG

S20R
TCGTCTCAATCTCKGACTGA

(AGC)6
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S21F
ATCTGGGCTTCCASGAGGT

S22R
CTGATCCTCCGCCACAY

(AAG)12; (ATC)6; (ATC)4; (AAG)5

S23F
GACTCGGACTCGGACGAC

S25R
CTCCTGCTCKTCTTTCAGGC

(AGG)7; (AAG)10; (GAG)4; (AAG)1

S37R
CTTRCCBTCCTTGTCCTTYT

S27F
GAAGCGCGGGCGWGT

S31R
TCCTCCTCTTCTTCTTCGTCW

(AAG)4; (AGG)4; (ACG)4; (AGG)11

S31F
WGACGAAGAAGAAGAGGAGGA

S28R
TCATTCATCAGCGTGTCRAT

(GAG)4

S34F
ABGAWGACGABGAGGAVGAV

S29F
MGCAAGAAGGCGTCGTA

S30R
CCTTCATCATGAGCTTCTGG

(AGG)4 (AAG)11

P. ramorum R1F
GYGGCGGTGGCTACAGYG

R3R
CTGCTGYTGCTGGTTGAAAG

(ACC)4; (ACC)5; (ACC)4

R2F
CTACTCSAGCCGCTACGC

R3F
CTTTCAACCAGCARCAGCAG

R4R
GTTCATCATGCCWCCCATR

(AGC)8

R4F
YATGGGWGGCATGATGAAC

R5R
AGGACCAGGAGATGGAGGAC

(AGC)4; (AGC)12; (AGC)4

R7F
TGTTCCARACCCGCTTCC

R8R
CACCAAGCAGCACKCGC

(ACG)9; (AAC)5; (AGC)10

R9R
GGAACGCACCAAAGACGC

Table 2: Set of primers designed with the 1st approach (Fig. 1A) to amplify genomic regions with candidate SSRs in a broad range of Phyto
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286–1134
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_Feb05

Supercont1.7
842678–843649

Supercont1.4
1481811–1482015

Supercont1.5
1235771–1236143

Supercont1.45
522394–522633

Supercont1.220
167896–168460

. In some circumstances, a pool of different 
re SSRs and were too long to be amplified by a 

orum) and http://www.pfgd.org/ or http://

ora species (Table 1). (Continued)
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R10F
GGAGATGACGGAAGATGACG

R11R
CCATCGAARTACATSACACGA

(AAGCC)4; (AGG)9; (AAG)7

R13F
AAGTCGAAGCTCGTGGTSAC

R14R
GTATCCGCTGRAAGAGCGTC

(AAG)10

R15F
CCGGAGCGCGTGGA

R16R
GGTAGTTGAGCGGCTTCTTG

(CCG)6

R16F
CAAGAAGCCGCTCAACTACC

R17R
TAACGGATCAGCTCTTGCTG

(ATC)4; (AGG)8

P. infestans I3F
GCCTGTGGAYGAGAATGGYS

I4R
CAGATCCACGACACCRGGY

(AAG)8

I5F
CATCAACAAGTGCTCGTWCS

I6R
TAGTCRAYGTTCTTGTTGTTCA

(AGC)5; (AGC)8

I7F
GHGTGGGCGAGTACTCCAAG

I8R
AAGCTGGCTATRWACACTGCCG

(AG)9

I9F
GCATYGGGTCGTTCCTGTA

I10R
AGHGTGCAGTACAGACCCGC

(AAG)11

I11F
TCGTCBGTGTCCTCBACGTC

I12R
ACCAGCATCTTRTTCTGRGCAG

(ACC)8

I13F
GTCTGCGCTGTCGGAACT

I14R
TRATGATGCGGTTCATCTCG

(AAG)7; (AAG)4

(a) = Primers are listed according to the localization in their respective genome projects (P. sojae, P. ramorum or P. infestans) and according to the flanked SSRs
primers was designed to amplify selected genomic regions from as many as possible Phytophthora species. Similarly, when target regions contained two or mo
single amplification a pool of different primers was designed.
(b) = Gene sequences available at http://genome.jgi-psf.org/sojae1/sojae1.home.html (P. sojae), http://genome.jgi-psf.org/ramorum1/ramorum1.home.html (P. ram
www.broad.mit.edu/annotation/genome/phytophthora_infestans/Home.html (P. infestans).

Table 2: Set of primers designed with the 1st approach (Fig. 1A) to amplify genomic regions with candidate SSRs in a broad range of Phytophth

http://genome.jgi-psf.org/sojae1/sojae1.home.html
http://genome.jgi-psf.org/ramorum1/ramorum1.home.html
http://www.pfgd.org/
http://www.broad.mit.edu/annotation/genome/phytophthora_infestans/Home.html
http://www.broad.mit.edu/annotation/genome/phytophthora_infestans/Home.html
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cies (Table 1) using primers designed on P. sojae 

(2)S31F-28R S27F-S31R S29F-S30R

5

ag)12

 

NS++

58°C/1.0 
mM*

EF216555
(aag)8
(agg)4
(agg)4
(aag)5
(agg)4
(aag)4
(aag)5
58°C/1.0 
mM*

EF216552
(aag)8
58°C/1.0 mM*

9
ag)10

 

NA+ NA+ EF216551
(aag)8
58°C/1.0 mM*

NA+ NA+ EF2165
(aag)8
(agg)5
(aag)9
58°C/1.0 mM*

NS++

58°C/1.0 
mM*

NA+ EF216553
(aag)7
(aag)7
58°C/1.0 mM*
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20 Table 3: Accession numbers and SSRs for GenBank deposited sequences http://www.ncbi.nlm.nih.gov/ amplified from 16 Phytophthora spe
with the first approach (Fig.1A).

Phytoph.
species

SELECTED PRIMERS(a)

S1F-S3R S4F-S5R S6F-S7R S10F-11R S16F-17R S18F-19R S19F-20R S21F-22R S23F-
S25R(1)

P. alni
subsp. alni
SCRP2

NS++

58°C/1.7 mM*
EF216617
No SSR
58°C/1.0 mM*

EF216607
(aac)4
58°C/1.7 
mM*

EF216602
(agc)6
58°C/1.0 
mM*

NS++

55°C/1.7 mM*
NA+ EF216590

No SSR
58°C/1.0 mM*

EF216580
(aag)5
(agg)5
(aag)4
(aag)6
(agg)5
58°C/1.0 
mM*

EF21656
(agg)7
(aag)10
(agg)16 (a
(aag)4
58°C/1.0
mM*

P. cambiv.
SCRP67

NS++

58°C/1.7 mM*
EF216618
No SSR
58°C/1.0 mM*

EF216606
(aac)4
58°C/1.7 
mM*

EF216601
(agc)4
(cg)5
58°C/1.0 
mM*

EF216593
No SSR
55°C/1.7 mM*

NS++

58°C/1.0 
mM*

NS++

58°C/1.0 mM*
EF216581
(agg)4
(aag)5
(aag)4
58°C/1.0 
mM*

EF21656
(agg)10 (a
(agg)9
(aag)12
(agg)4
(agg)7
58°C/1.0
mM*

P. cinnam.
SCRP115

NA+ NA+ NA+ NS++

58°C/1.0 
mM*

NS++

55°C/1.7 mM*
NA+ NA+ NS++

58°C/1.0 
mM*

NA+

P. citricola
SCRP130

NA+ EF216619
No SSR
58°C/1.0 mM*

NA+ NA+ NA+ NA+ NA+ NS++

58°C/1.0 
mM*

NA+

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216617
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216607
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216602
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216590
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216580
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216565
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216555
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216552
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216618
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216606
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216601
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216593
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216581
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216569
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216551
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF2165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216619
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216553
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NA+ NA+ EF21655054
(aag)9
58°C/1.0 mM*

NA+ NS++

60°C/0.7 
mM*

EF216542
(aag)7
(aag)8
58°C/1.0 mM*

5

0 

NA+ NS++

60°C/0.7 
mM*

EF216543
(aag)5
58°C/1.0 mM*

EF216560
No SSR
58°C/1.0 
mM*

NA+ NS++

58°C/1.0 mM*

NS++

58°C/0.7 
mM*

NS++

60°C/0.7 
mM*

EF216549
(aag)8
58°C/1.0 mM*

4

0 

EF216556
(agg)4
58°C/0.7 
mM*

NS++

60°C/0.7 
mM*

EF216548
(aag)5
(aag)9
58°C/1.0 mM*

2

0 

EF216559
No SSR
58°C/1.0 
mM*

NA+ EF216547
(aag)5
58°C/1.0 mM*

cies (Table 1) using primers designed on P. sojae 
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P. 
europaea
SCRP622

NS++

58°C/1.0 mM*
EF216616 
(acg)4
58°C/1.0 mM*

EF216605
No SSR
58°C/1.7 
mM*

EF216600
No SSR
58°C/1.0 
mM*

NS++

55°C/1.7 mM*
NS++

55°C/1.7 
mM*

EF216589
No SSR
58°C/1.0 mM*

EF216576
(aag)4
58°C/1.0 
mM*

EF21656
(agg)9
(aag)10
(aag)7
(agg)4
(aag)6
(agg)4
(agg)4
58°C/1.
mM*

P. 
fragariae
var.rubi
SCRP333

NA+ NA+ NS++

58°C/1.7 
mM*

NS++

58°C/1.0 
mM*

EF216594 
(aac)4
55°C/1.7 mM*

NA+ EF216584
No SSR
58°C/1.0 mM*

NA+ NA+

P. ilicis
SCRP377

NS++

58°C/1.7 mM*
EF216608 
(ccg)4
58°C/1.0 mM*

NA+ NS++

58°C/1.0 
mM*

NS++

55°C/1.7 mM*
NA+ NA+ NA+ EF21657

No SSR
58°C/1.
mM*

P. 
infestans
sc 03.26.3.3

NA+ EF216615
No SSR
58°C/1.0 mM*

NA+ NA+ NS++

55°C/1.7 mM*
NA+ NA+ NA+ NA+

P. 
inundata
SCRP644

EF216624
No SSR
58°C/1.0 mM*

EF216614
No SSR
58°C/1.0 mM*

NA+ EF216599
No SSR
58°C/1.0 
mM*

NS++

55°C/1.7 mM*
NA+ EF216588

No SSR
58°C/1.0 mM*

NA+ NA+

P. lateralis
SCRP390

NS++

58°C/1.0 mM*
EF216611
No SSR
58°C/1.0 mM*

EF216604
(ac)5
58°C/1.7 
mM*

EF216598
(agc)4
58°C/1.0 
mM*

NS++

55°C/1.7 mM*
EF216592
(acg)4
(agc)4
58°C/1.0 
mM*

EF216587
No SSR
58°C/1.0 mM*

EF216579
(aag)5
58°C/1.0 
mM*

EF21656
(agg)5
(aag)4
(aag)6
(agg)4
58°C/1.
mM*

P. nemor.
SCRP910

NA+ EF216613 
(ccg)4
58°C/1.0 mM*

NA+ EF216597
No SSR
58°C/1.0 
mM*

NA+ NS++

55°C/1.7 
mM*

NA+ NA+ EF21657
No SSR
58°C/1.
mM*

Table 3: Accession numbers and SSRs for GenBank deposited sequences http://www.ncbi.nlm.nih.gov/ amplified from 16 Phytophthora spe
with the first approach (Fig.1A). (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216616
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216605
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216600
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216589
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216576
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216568
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF21655054
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216594
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216584
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216542
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216608
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216575
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216543
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216615
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216560
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216624
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216614
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216599
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216588
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216549
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216611
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216604
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216598
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216592
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216587
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216579
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216564
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216556
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216548
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216613
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216597
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216559
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216547
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EF216557
(agg)14
58°C/1.0 
mM*

NS++

60°C/0.7 
mM*

EF216546
(aag)4
58°C/1.0 mM*

4

 

EF216558
(agg)6
(agg)4
(aag)4
(agg)4
58°C/0.7 
mM*

NS++

60°C/0.7 
mM*

EF216545
(aag)4
58°C/1.0 mM*

3
ag)5
 

EF216561
(agg)4
58°C/1.0 
mM*

NA+ EF216544
(aag)7
58°C/1.0 mM*

2

 

NS++

58°C/0.7 
mM*

NA+ EF216540 
(aag)4
58°C/1.0 mM*

 
NS++

58°C/0.7 
mM*

NA+ EF216541
(agg)4
(aag)11
58°C/1.0 mM*

cies (Table 1) using primers designed on P. sojae 
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P. pseudos.
SCRP674

EF216622
No SSR
58°C/1.0 mM*

NS++

58°C/1.0 mM*
NS++

58°C/1.7 
mM*

EF216596
No SSR
58°C/1.0 
mM*

NA+ NA+ NA+ NA+ EF21657
No SSR
58°C/1.0
mM*

P. psychro.
SCRP630

EF216623 
(agc)4
58°C/1.0 mM*

EF216612 
(ccg)4
58°C/1.0 mM*

NA+ NA+ NA+ NA+ NA+ NS++

58°C/1.0 
mM*

EF21657
No SSR
58°C/1.0
mM*

P. 
quercina
SCRP541

EF216621
(agc)5
58°C/1.0 mM*

NA+ NA+ NA+ NA+ NA+ NA+ NS++

58°C/1.0 
mM*

EF21656
(aag)10 (a
58°C/1.0
mM*

P. 
ramorum
SCRP911

EF216620
No SSR
58°C/1.0 mM*

EF216610 
(acc)4
58°C/1.0 mM*

EF216603
No SSR
55°C/1.7 
mM*

NS++

58°C/1.0 
mM*

EF216595
No SSR
55°C/1.7 mM*

EF216591
No SSR
58°C/1.0 
mM*

EF216586
No SSR
58°C/1.0 mM*

EF216578
(aag)4
(atc)4
(aag)5
(aag)5
58°C/1.0 
mM*

EF21656
(aag)4
(agg)4
(aag)7
58°C/1.0
mM*

P. sojae
SCRP555

NA+ EF216609
(aac)14
58°C/1.0 mM*

NS++

58°C/1.7 
mM*

NS++

58°C/1.0 
mM*

EF382779
No SSR
55°C/1.7 mM*

NA+ EF216585 
(agc)6
58°C/1.0 mM*

EF216577
(aag)12
(atc)6
(atc)4
(aag)5
58°C/1.0 
mM*

NS++

58°C/0.7
mM*

(a) = Primers listed in Table 2 and not reported in this table are those that did not produce any reliable sequence (see text).
(1) = Primer S25R was replaced by primer S37R for P. nemorosa, P. pseudosyringae, P. psychrophila, and P. ilicis.
(2) = Primer S31F was replaced by primer S34F for P. alni, P. citricola, P. infestans, P. nemorosa, and P. quercina.
NA+ = Isolate-primer combinations that did not produce any amplification or produced complex profiles (two or more fragments).
NS++ = Isolate-primer combinations for which single PCR bands were obtained but direct sequencing did not produce reliable results.
°C/mM* = Selected annealing temperature (°C) and MgCl2 concentration (mM) in PCR reactions.

Table 3: Accession numbers and SSRs for GenBank deposited sequences http://www.ncbi.nlm.nih.gov/ amplified from 16 Phytophthora spe
with the first approach (Fig.1A). (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216622
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216596
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216557
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216546
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216623
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216612
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216574
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216558
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216545
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216621
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216563
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216561
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216544
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216620
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216610
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216603
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216595
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216591
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216586
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216578
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216562
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216540
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216609
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF382779
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216585
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216577
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216541
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thora species (Table 1) using primers designed 

R13F-R14R R16F-R17R

EF216651
(aag)4
58°C/1.7 mM*

EF216625
(acg)4
58°C/1.0 mM*

NS++

58°C/1.7 mM*
EF216626
(acg)4
58°C/1.0 mM*

NS++

58°C/
1.7 mM*

NA+

NA+ EF216630
No SSR
58°C/1.0 mM*

EF216655
(aag)4
58°C/1.7 mM*

NA+

EF216647
(aag)4
58°C/1.7 mM*

NS++

58°C/1.0 mM*

EF216648
No SSR
58°C/1.7 mM*

NS++

58°C/1.0 mM*

NA+ NA+

EF216654
No SSR
58°C/1.7 mM*

EF216629
No SSR
58°C/1.0 mM*
BM
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20 Table 4: Accession numbers and SSRs for GenBank deposited sequences http://www.ncbi.nlm.nih.gov/ amplified from 16 Phytoph
on P. ramorum with the first approach (Fig. 1A).

Phytophthora
species

SELECTED PRIMERS(a)

(1)R1F-R3R R3F-R4R R4F-R5R R7F-9R(2) R10F-R11R

P. alni subsp. alni
SCRP2

NA+ NA+ EF216645
No SSR
58°C/1.0 mM*

EF216671
No SSR
58°C/1.0 mM*

EF216662
No SSR
58°C/1.7 mM*

P. cambivora
SCRP67

NS++

58°C/1.0 mM*
NA+ NS++

58°C/1.0 mM*
EF216673
(agc)8
58°C/1.0 mM*

EF216663
(agg)4
(aag)4
(agg)4
58°C/1.7 mM*

P. cinnamomi
SCRP115

NA+ NA+ NA+ NA+ NA+

P. citricola
SCRP130

NA+ NA+ EF216644
No SSR
58°C/1.0 mM*

NA+ NA+

P. europaea
SCRP622

NS++

58°C/1.0 mM*
NA+ EF216643

No SSR
58°C/1.0 mM*

NA+ EF216661
(agg)4
(aag)7
(agg)5
58°C/1.7 mM*

P. fragariae
var. rubi
SCRP333

NS++

58°C/1.0 mM*
NS++

58°C/1 mM**
EF216634
No SSR
58°C/1.0 mM*

EF216672
(agc)7
58°C/1.0 mM*

EF216657
(aag)4
(agg)4
58°C/1.7 mM*

P. ilicis
SCRP377

NS++

58°C/1.0 mM*
EF216646
(agc)4
(agc)4
58°C/1.0 mM*

EF216635
(agc)4
(accat)5
58°C/1.0 mM*

EF216664
(actg)3
(agc)6
58°C/1.0 mM*

NS++

58°C/1.7 mM*

P. infestans
sc 03.26.3.3

NS++

58°C/
1.0 mM*

NA+ NA+ NA+ NS++

58°C/1.7 mM*

P. inundata
SCRP644

EF216633
No SSR
58°C/
1.0 mM*

NA+ NA+ NA+ NA+

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216645
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216671
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216662
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216651
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216625
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216673
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216663
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216626
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216644
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216630
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216643
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216661
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216655
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216634
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216672
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216657
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216647
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216646
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216635
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216664
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216648
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216633
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216654
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216629
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NA+ EF216628
(agg)8
(agc)4
58°C/1.0 mM*

EF216653
(agg)9
58°C/1.7 mM*

NA+

EF216652
No SSR
58°C/1.7 mM*

NA+

NS++

58°C/1.7 mM*
NS++

58°C/1.0 mM*

EF216651
(aag)8
(aag)4
58°C/1.7 mM*

NA+

EF216650
(aag)10
58°C/1.7 mM*

EF216627
(atc)4
(agg)8
58°C/1.0 mM*

EF216649
(acg)4
(aag)4
58°C/1.7 mM*

NA+
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P. lateralis
SCRP390

EF216631
No SSR
58°C/1.0 mM*

NA+ EF216642
(aac)5
(agc)5
58°C/1.7 mM*

EF216669
(agc)5
(aac)6
58°C/1.0 mM*

EF216660
(agg)4
58°C/1.7 mM*

P. nemorosa
SCRP910

NS++

58°C/1.0 mM*
NA+ EF216639

(agc)4
(accat)4
58°C/1.0 mM*

EF216668
(actg)3
(agc)6
58°C/1.7 mM*

NS++
58°C/1.7 mM*

P. pseudosyringae
SCRP674

EF216632
No SSR
58°C/1.0 mM*

NA+ EF216641
(accat)4
58°C/1.0 mM*

EF216667
No SSR
58°C/1.0 mM*

NA+

P. psychrophila
SCRP630

NS++

58°C/1.0 mM*
NA+ EF216640

(accat)4
58°C/1.0 mM*

EF216666
(actg)3
(agc)6
58°C/1.0 mM*

NA+

P. quercina
SCRP541

NS++

58°C/1.0 mM*
NA+ EF216638

No SSR
58°C/1.0 mM*

EF216674
No SSR
58°C/1.0 mM*

NA+

P. ramorum
SCRP911

NS++

58°C/1 mM*
NA+ EF216637

(agc)4
(agc)10
(agc)4
58°C/1.0 mM*

EF216665
(agc)24
58°C/1.0 mM*

EF216659
(aagcc)4
(agg)9
(aag)7
58°C/1.7 mM*

P. sojae
SCRP555

NA+ NA+ EF216636
(agc)5
58°C/1.0 mM*

EF216670
(agc)10
(agcg)5
58°C/1.0 mM*

EF216658
(agg)5
(aag)6
(agg)4
58°C/1.7 mM*

(a) = Primers listed in Table 2 and not reported in this table are those that did not produce any reliable sequence (see text).
(1) = Primer R1F was replaced by primer R2F for P. cambivora, P. inundata, P. nemorosa, P. ilicis and P. fragaria.
(2) = Primer R9R was replaced by primer R8R for P. quercina.
NA+ = Isolate-primer combinations that did not produce any amplification or produced complex profiles (two or more fragments).
NS++ = Isolate-primer combinations for which single PCR bands were obtained but direct sequencing did not produce reliable results.
°C/mM* = Selected annealing temperature (°C) and MgCl2 concentration (mM) in PCR reactions.

Table 4: Accession numbers and SSRs for GenBank deposited sequences http://www.ncbi.nlm.nih.gov/ amplified from 16 Phytoph
on P. ramorum with the first approach (Fig. 1A). (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216631
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216642
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216669
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216660
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216628
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216639
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216668
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216653
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216632
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216641
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216667
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216652
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216640
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216666
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216638
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216674
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216651
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216637
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216665
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216659
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216650
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216627
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216636
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216670
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216658
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216649
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ies (Table 1) using primers designed on P. 

F-I12R I13F-I14R

+ EF216477
(agg)4
(aag)5
58°C/1.7 mM*

++

C/1.7 mM*
EF216478
(agg)5
(aag)5
58°C
1.7 mM*

16494
g)4
C/1.7 mM*

NS++

58°C/1.7 mM*

16498
g)4
C/1.7 mM*

EF216482
(agg)9
(aag)5
58°C/1.7 mM

++

C/1.7 mM*
EF216476
(agg)5
(aag)5
58°C/1.7 mM*

+ NA+

16495
 SSR
C/1.7 mM*

EF216483
(aag)4
(agc)4
58°C/1.7 mM

16487
c)8
C/1.7 mM*

EF216474
(aag)7
(aag)4
58°C/1.7 mM
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20 Table 5: Accession numbers and SSRs for GenBank deposited sequences http://www.ncbi.nlm.nih.gov/ amplified from 16 Phytophthora spec
infestans with the first approach (Fig. 1A).

Phytophthora
species

SELECTED PRIMERS(a)

I3F-4R I5F-I6R I7F-I8R I9F-I10R I11

P. alni subsp. alni
SCRP2

NS++

58°C/1.7 mM*
EF216535
No SSR;
58°C/1.0 mM*

NS++

58°C/1.7 mM*
EF216513
(aag)4
(agg)6
58°C/1.0 mM*

NA

P. cambivora
SCRP67

NS++

58°C/1.7 mM*
NA+ NS++

58°C/1.7 mM*
EF216516
(acg)4
(aag)5
(agg)6
58°C/1.0 mM*

NS
58°

P. cinnamomi
SCRP115

NS++

58°C/1.7 mM*
NS++

58°C/1.7 mM*
NS++

58°C/1.7 mM*
EF216509
(aag)14
58°C/1.0 mM*

EF2
(aa
58°

P. citricola
SCRP130

NS++

58°C/1.7 mM*
EF216534
(agc)4; (agc)5
58°C/1.0 mM*

NS++

58°C/1.7 mM*
EF216520
(aag)4
58°C/1.0 mM*

EF2
(aa
58°

P. europaea
SCRP622

NS++

58°C/1.7 mM*
NS++

58°C/1.0 mM*
NS++

58°C/1.7 mM*
EF216512
No SSR
58°C/1.0 mM*

NS
58°

P. fragariae
var. rubi
SCRP333

NS++

58°C/1.7 mM*
NA+ NA+ EF216500

(acg)4
58°C/1.0 mM*

NA

P. ilicis
SCRP377

NS++

58°C/1.7 mM*
EF216532
(agc)9
58°C/1.0 mM*

NA+ EF216501
No SSR
58°C/1.0 mM*

EF2
No
58°

P. infestans
sc 03.26.3.3

NS++

58°C
1.7 mM*

EF216524
(agc)6
(agc)5
58°C/1.0 mM

NS++

58°C/1.7 mM*
EF216499
(aag)11
58°C/1.0 mM*

EF2
(ac
58°

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216535
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216513
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216477
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216516
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216478
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216509
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216494
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216534
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216520
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216498
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216482
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216512
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216476
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216500
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216532
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216501
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216495
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216483
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216524
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216499
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216487
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216474
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EF216497
No SSR
58°C/1.7 mM*

NA+

EF216493
No SSR
58°C/1.7 mM*

EF216481
(agg)5
(aag)4
58°C/1.7 mM*

EF216492
(aag)4
58°C/1.7 mM*

EF216486
(acg)4
(aag)4
(agc)4
58°C/1.7 mM*

EF216496
(aag)5
58°C/1.7 mM*

EF216485
(acg)4
(aag)4
58°C/1.7 mM*

EF216491
(aag)4
58°C/1.7 mM*

EF216484
(aag)4
(agc)4
58°C/1.7 mM*

EF216490
(aag)5
58°C/1.7 mM*

EF216480
(agg)6
(aag)4
58°C/1.7 mM*

EF216489
(acc)4
58°C/1.7 mM*

EF216479
(aac)7
(agg)9
58°C/1.7 mM

EF216488
No SSR
58°C/1.7 mM*

EF216475
(agg)7
(aag)5
58°C/1.7 mM*

pecies (Table 1) using primers designed on P. 
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P. inundata
SCRP644

NS++

58°C/1.7 mM*
NS++

58°C/1.0 mM*
NS++

58°C/1.7 mM*
EF216508
No SSR
58°C/1.0 mM*

P. lateralis
SCRP390

NS++

58°C/1.7 mM*
EF216527
(agc)4
58°C/1.0 mM*

NS++

58°C/1.7 mM*
EF216507
No SSR
58°C/1.0 mM*

P. nemorosa
SCRP910

NS++

58°C/1.7 mM*
EF216531
(agc)7
58°C/1.0 mM*

NA+ EF216503
No SSR
58°C/1.0 mM*

P. pseudosyringae
SCRP674

NS++

58°C/1.7 mM*
EF216529
(agc)7
58°C/1.0 mM*

NS++

58°C/1.7 mM*
EF216502
No SSR
58°C/1.0 mM*

P. psychrophila
SCRP630

NS++

58°C/1.7 mM*
EF216528
(agc)4
58°C/1.0 mM*

NS++

58°C/1.7 mM*
NA+

P. quercina
SCRP541

NS++

58°C/1.7 mM*
NS++

58°C/1.0 mM*
NS++

58°C/1.7 mM*
EF216506
No SSR
58°C/1.0 mM*

P. ramorum
SCRP911

NS++

58°C/1.7 mM*
EF216525
No SSR
58°C/1.0 mM*

NS++

58°C/1.7 mM*
EF216505
No SSR
58°C/1.0 mM*

P. sojae
SCRP555

NS++

58°C/1.7 mM*
EF216526
No SSR
58°C/1.0 mM*

NA+ EF216504
(agc)4
58°C/1.0 mM*

(a) = Primers listed in Table 2 and not reported in this table are those that did not produce any reliable sequence (see text).
NA+ = Isolate-primer combinations that did not produce any amplification or produced complex profiles (two or more fragments).
NS++ = Isolate-primer combinations for which single PCR bands were obtained but direct sequencing did not produce reliable results.
°C/mM* = Selected annealing temperature (°C) and MgCl2 concentration (mM) in PCR reactions.

Table 5: Accession numbers and SSRs for GenBank deposited sequences http://www.ncbi.nlm.nih.gov/ amplified from 16 Phytophthora s
infestans with the first approach (Fig. 1A). (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216508
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216497
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216527
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216507
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216493
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216481
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216531
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216503
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216492
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216486
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216529
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216502
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216496
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216485
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216528
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216491
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216484
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216506
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216490
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216480
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216525
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216505
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216489
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216479
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216526
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216504
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216488
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF216475
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The resultant primers enabled the amplification of 271
single PCR bands of the expected size (Fig. 2). In the
remaining primer-species combinations, 193 amplifica-
tions did not produce any product or produced complex
profiles (two or more PCR fragments) impeding direct
sequencing (Fig. 2). Some primer combinations failed to
amplify a product from any of the Phytophthora species
whereas other combinations amplified single bands from
all or most Phytophthora species (Tables 3, 4, 5).

Sequencing of single PCR bands and scanning for SSRs
All single PCR bands (271) were purified to remove excess
primers and nucleotides and sequenced in both directions
using the same primers used for the amplification. When
forward and/or reverse sequences were not identical,
amplification, purification and sequencing were repeated
twice and all unreliable sequences were discarded. Finally,
171 sequences were obtained with primers designed

against P. sojae (70), P. ramorum (50) and P. infestans (51)
genomes (Fig. 2) and scanned to identify SSRs by means
of sputnik. Sequenced regions contained a total number
of 211 SSRs distributed across the genome of the 16 target
species with those of clade 7 (P. alni, P. cambivora, P. euro-
paea, P. fragariae and P. sojae) and clade 8 (P. lateralis and
P. ramorum) more highly represented (Fig. 3; Tables 3, 4,
5). A single microsatellite was identified in P. inundata. All
SSRs identified in P. infestans were amplified with primers
designed against its own genome (Fig. 3). Identified SSRs
ranged in the number of repeats from 4 to 16, from 3 to
16 and from 4 to 14 in P. sojae, P. ramorum and P. infestans
respectively (Tables 3, 4, 5). A single repeat of 24 was
found in an SCRI isolate of P. ramorum (Table 4). Most
SSRs were of seven repeats or less (88.9% P. infestans,
82.8% P. ramorum, 76.8 P. sojae), with a repeat number of
four being the most common in all species (Fig. 4). Over-
all, the most common motifs were (AAG)n, (AGG)n and
(AGC)n representing 40.9%, 23.3% and 17.6% respec-
tively of the total number of identified SSRs (Fig. 5). Tri-
nucleotide repeats were the most common (94.7%)
followed by pentanucleotide (2.4%), tetranucleotide
(1.9%) and dinucleotide (1.0%) repeats.

To evaluate intraspecific variability a few selected target
regions amplified by primers S23F-S25R, S21F-S22R, I9-
I10 and I5-6 (Table 2) were examined and sequenced
from additional isolates of P. alni, P. cambivora, P. cinnam-
omi, P. pseudosyringae and P. ilicis (Table 1). The analysed
target regions did not show intraspecific variability among
analysed isolates of P. alni subsp. alni, P. pseudosyringae or
P. ilicis, whereas P. cambivora and P. cinnamomi isolates
were polymorphic in all the tested primer combinations.
As an example, the target region amplified with primers
I9-I10 from P. cinnamomi was characterised by 12, 14 and
18 repeated motifs (AGG) in three tested isolates (Table
6).

Approach 2 – Identification of SSRs in Phytophthora spp. 
clade 7
The aim of this approach was to focus the search for SSR
loci to a restricted range of four clade 7 Phytophthora spe-
cies (P. alni, P. cambivora, P. europaea and P. fragariae) phy-
logenetically related to P. sojae (Fig 1B) [9].

Identification of target regions
This approach was based on a detailed list of SSRs identi-
fied in the genome of P. sojae and provided by Dr. Niklaus
Grunwald at the Agricultural Research Service, U.S.
Department of Agriculture, Corvallis, Oregon. Among the
list, sixty genomic regions (500–1000 bp) were manually
selected on the basis of having the longest SSRs in exons
(20), introns (20) and non coding regions (20). The
selected regions (Table 7) were screened using BLAST
against the entire genomes of P. ramorum and P. infestans

Amplification results obtained with 16 Phytophthora species (Table 1) using primers designed against P. sojae, P. ramorum and P. infestans genomes using Approach 1 (Fig. 1A)Figure 2
Amplification results obtained with 16 Phytophthora 
species (Table 1) using primers designed against P. 
sojae, P. ramorum and P. infestans genomes using 
Approach 1 (Fig. 1A). NA represents primer-species com-
binations in which amplification reactions did not produce 
any product or produced complex profiles (two or more 
PCR fragments) preventing direct sequencing. NS represents 
primer-species combinations in which amplification reactions 
produced single PCR bands, however direct sequencing did 
not yield reliable sequences. SQ represents primer-species 
combinations in which reliable sequences were obtained.
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Number of SSRs identified for each of the 16 Phytophthora species using primers designed against P. sojae, P. ramorum and P. infestans genomes (Approach 1, Fig. 1A)Figure 3
Number of SSRs identified for each of the 16 Phytophthora species using primers designed against P. sojae, P. 
ramorum and P. infestans genomes (Approach 1, Fig. 1A).
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to search for homology irrespective of the SSR regions.
None of these regions aligned with sequences from the P.
infestans genome whereas 18 of the 60 regions were suffi-
ciently conserved to match homologous genes in P. ramo-
rum (6 were localised in exons and 12 in introns).
Surprisingly none of these 18 regions contained SSRs in P.
ramorum, however it was hypothesised that microsatellites
could be present in homologous regions of other Phytoph-
thora species more closely related to P. sojae. To verify this
hypothesis, thirty-six primers (18 pairs) were designed in
the conserved flanking regions and used to amplify the
target regions from P. alni, P. cambivora, P. europaea, P. fra-
gariae and an SCRI isolate of P. sojae (Table 7). Degenerate
primers were designed when necessary.

Amplification, sequencing and SSR scoring
Most primer-species combinations produced single PCR
bands of the expected size (Table 8). Purification and
direct sequencing of these PCR fragments produced 54
reliable sequences which were analysed as previously

described for Approach 1. Twelve different microsatellites
were identified: 2 in P. europaea, 3 in P. fragariae and P.
alni and 4 in P. cambivora (Table 8). Among these, 10 were
trinucleotides and 2 were tetranucleotides repeated 4, 5 or
6 times. All regions sequenced from the SCRI isolate of P.
sojae contained the predicted/expected SSR (Table 8).

Discussion
The present study was undertaken to develop a method to
rapidly identify loci containing SSRs and to create a pool
of microsatellite markers for species of the genus Phytoph-
thora taking advantage of publicly available sequences for
P. sojae, P. ramorum and P. infestans. Recently, Garnica et
al. explored the transferability of microsatellites across P.
sojae, P. ramorum and P. infestans via an in silico virtual PCR
approach [27]. In the present study, such an analysis on
the same three species was conducted but also followed
up with a comprehensive screening and validation process
on multiple species to provide a practical evaluation of

Number of repeated motifs identified in 16 target Phytoph-thora species (Table 1) using primers designed against P. sojae, P. ramorum and P. infestans genomes according to Approach 1 (Fig. 1A)Figure 4
Number of repeated motifs identified in 16 target 
Phytophthora species (Table 1) using primers 
designed against P. sojae, P. ramorum and P. infestans 
genomes according to Approach 1 (Fig. 1A).

List and frequency of the different SSR motifs identified in 16 Phytophthora species (Table 1) using primers designed on P. sojae, P. ramorum and P. infestans genomes according to Approach 1 (Fig. 1A)Figure 5
List and frequency of the different SSR motifs identi-
fied in 16 Phytophthora species (Table 1) using prim-
ers designed on P. sojae, P. ramorum and P. infestans 
genomes according to Approach 1 (Fig. 1A).
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the procedure as a means of accelerating the search for
new SSR markers in the genus Phytophthora.

The first approach was aimed at the identification of
informative SSR loci common to many Phytophthora spe-
cies. This approach was based on the hypothesis that
among the large number of microsatellites distributed
across the genome of species of the genus there may be a
proportion in genes common to many species with suffi-
cient sequence conservation in flanking regions to allow
the design and use of universal SSR primers. Our search of
the predicted gene sets yielded approximately 10% fewer
SSRs and a corresponding lower abundance of SSRs per
Mb of sequence than that of Garnica et al [27]. Prelimi-
nary analyses revealed a very limited number of loci con-
taining SSRs that were common to the three Phytophthora
species tested. The majority of the identified loci (81.6%)
were common to P. sojae and P. ramorum only which is
consistent with their closer phylogenetic relationship in
clades 7 and 8 than to P. infestans in clade 1 [9,2,3]. Simi-
larly, Garnica et al. found in their in silico analysis that
7.5% of their primers were, in theory, transferable
between at least two species (mainly P. ramorum and P.
sojae) and only 1.0% transferable between the three spe-

cies [27]. Among the selected sequences satisfying the
above conditions, the number of repeats ranged from 3 to
17 and most SSRs showed seven repeats or less, with a
repeat number of four being the most common in all spe-
cies. The abundance of different repeat motifs differed
slightly between species however, on average, (AAG)n,
(AGG)n and (AGC)n were the most abundant triplets in
all three Phytophthoras (Fig. 5). These results differ from
those reported by Garnica et al. in which (AGC)n, (ACG)n
and (AGG)n were the most abundant triplets amongst all
the screened EST sequences [27]. It should, however be
considered that unlike the study of Garnica our data are
confined to SSR sequences for which it was possible to
identify a homologue in at least one of the other two spe-
cies. Therefore it could be hypothesised that motifs
(AAG)n and (AGG)n are more abundant in more con-
served genes. The dominance of trinucleotide SSRs com-
pared to dinucleotide SSRs was not surprising considering
that trinucleotides are abundant in coding regions of all
higher eukaryotic genomes [31-33]. Dinucleotide repeats,
in contrast, are characterised by higher mutation rates
which may explain their abundance in introns and non-
coding regions and lower frequency in coding regions,
which cannot tolerate frame-shift mutations [34,35].

Table 6: Accession numbers and SSRs for selected microsatellites amplified and sequenced from two or more isolates of the same 
species to evaluate intraspecific variability.

Phytophthora species Phytophthora isolates Primers SSRs Accession
number

P. alni subsp. alni SCRP2 S23F-S25R (agg)7; (aag)10; (agg)16; (aag)12; (aag)4 EF216565
SCRP4 (agg)7; (aag)10; (agg)16; (aag)12; (aag)4 EF216567
SCRP8 (agg)7; (aag)10; (agg)16; (aag)12; (aag)4 EF216566

P. cambivora SCRP67 S23F-S25R (agg)10; (aag)10; (agg)9; (aag)12; (agg)4; (agg)7 EF216569
SCRP75 (agg)9; (aag)10; (agg)11; (aag)12; (agg)6 EF216571
SCRP82 (agg)10; (aag)10; (agg)9; (aag)12; (agg)5 EF216570

P. cambivora SCRP67 S21F-S22R (agg)4; (aag)5; (aag)4 EF216581
SCRP80 (agg)4; (aag)5; (aag)4 EF216582
SCRP82 (aag)4; (agg)6; (agg)4 EF216583

P. cambivora SCRP67 I9F-I10R (acg)4; (aag)4; (agg)6 EF216516
SCRP75 (acg)4; (aag)4; (agg)6 EF216519
SCRP80 (acg)4; (aag)4; (agg)6 EF216517
SCRP82 (aag)5; (agg)5 EF216518

P. cinnamomi SCRP115 I9F-I10R (aag)14 EF216509
SCRP118 (aag)18 EF216511
SCRP121 (aag)12 EF216510

P. pseudosyringae SCRP674 I5F-I6R (agc)7 EF216529
SCRP734 (agc)7 EF216530

P. ilicis SCRP377 I5F-I6R (agc)9 EF216532
SCRP379 (agc)9 EF216533
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Primers designed in the present study with the first
approach were tested against a panel of 16 different Phy-
tophthora species representing the breadth of diversity
across the genus to amplify P. sojae, P. ramorum and P.
infestans target regions containing 33, 17 and 8 SSRs
respectively. Overall, these primers enabled the sequenc-
ing of 171 target regions which contained 211 SSRs rang-
ing in repeat number from 3 to 16. Most of these SSRs
showed seven repeats or less with four the most common
repeat number and (AAG)n, (AGG)n and (AGC)n the
most common motifs. Trinucleotide repeats were domi-
nant followed by pentanucleotide, tetranucleotide and
dinucleotide repeats. This data indicate that such an
approach can be useful to identify cross-specific SSR loci
in the genus Phytophthora. As further genome sequences
become available, for example, P. capsici
http:www.jgi.doe.gov/sequencing/why/CSP2006/Pcap

sici.html, the process can be refined to specific subsets of
the genus. The mutation rates and, consequently, the prac-
tical utility of the identified SSRs in the study of the spe-
cific Phytophthora species need to be examined further.
Undoubtedly, a risk of this approach is that the selection
is biased towards more conserved sequences which may
subsequently have a lower mutation rate that reduces
their utility as polymorphic markers. Furthermore, the fact
that P. infestans SSRs were all identified using primers
designed on its own genome (Fig. 3) may indicate that
this approach is less appropriate for distant relatives con-
sidering that, as stated above, P. infestans is phylogeneti-
cally distant from P. sojae and P. ramorum. However, the
identification of intraspecific polymorphisms in some
selected SSRs is encouraging and demonstrates that at
least some of the selected SSRs are valuable for immediate
practical applications (Table 6). This is consistent with the

Table 7: Set of primers designed with the 2nd approach (Fig. 1B) to amplify genomic regions potentially containing SSRs in 
Phytophthora species of clade 7 [2].

Forward primer Reverse Primer SSRs Source(a) Gene(b)

S38F
TCGTSTTCTACGTGCTGGAY

S39R
GTAGCACGCGAACATGAASA

(AAC)18 scaffold_26:
667079–667377

E

S40F
TTCCTTAAGTGGGGGAGGAT

S41R
TRTCGGCRTTCAGCTTCTGT

(AAG)4; (AAG)22 scaffold_125:
153837–154222

I

S42F
GCTGCAAGAGTCSCTCGAGTA

S43R
CTTGAGGATGTCRATGAGCA

(AG)21 scaffold_89:
132819–133248

I

S44F
GTRGCTCCTTCCTTAAGTGG

S45R
GTGCTGCASGTAYGGCTTC

(AAG)17 scaffold_75:
344500–344901

I

S46F
GTTGCGCGTGAGGTTCTC

S47R
CAAAAGCTCTGCGTCC

(AG)22 scaffold_67:
282390–282656

I

S48F
YCGGGCSACGGTAGG

S49R
AAGAGCGTRAGCAGGAACC

(AG)18 scaffold_65:
225236–225440

I

S50F
GTGGCTTCCACTGYTGCTG

S51R
YATCAAGGACGTCAACTCGA

(AAC)9; (AACAGC)23 scaffold_48:
118994–119610

E

S52F
CGGGATTTRTCRGATCAGG

S53R
CTGTYTGATCARCTCTCCGCT

(AGG)19 scaffold_46:
153312–153646

E

S56F
CACGAGCTGCAGKCATAYCT

S57R
AGAATKGAMGCGATCGAC

(AGG)16 scaffold_21:
370731–371140

E

S58F
TCGATCRACAGAAGCTGCWA

S59R
GGAGTTCGCCATCAACAACT

(AAG)14 scaffold_19:
606139–606624

I

S60F
GGCGTTTAAAGGCGTTTAAA

S61R
CGTCTTCTTCTTGACGCACA

(AC)18 scaffold_52:
422559–422915

I

S64F
YTTGCGACTAGCAAAGTGG

S65R
CGAACTCCTTGTACAGGATGG

(AG)14 scaffold_56:
179585–179895

E

S66F
GCAGYAGGCCCGGCCT

S67R
GGAGTTCGCCATCAACAACT

(AAG)11 scaffold_12:
130593–130967

E

S68F
CGTCGGTGGAGTAAACATCA

S69R
AAAGGCGTTCGGAGAGYTG

(AG)14 scaffold_66:
83968:84423

I

S70F
ATGACGAGGCAGCAGTTGAC

S71R
AAGAACWGCGTSTACCTGCG

(ATC)13 scaffold_2:
564977–565285

I

S72F
GCARCAATCTTCTGCTTYTTC

S73R
ACACCTSCGTACWTTCGTCA

(AAC)12 scaffold_92:
221631–221935

I

S74F
CGGTGGTACTTGTCGTCCTC

S75R
TSTCCGGCTACATCATCATC

(ATT)12 scaffold_41:
327977–328190

I

S76F
GCATCTACGACCAGATCTACCC

S77R
GTAGACSGAGATGATGGCGT

(AC)8 scaffold_127:
112530–112930

I

(a) = Gene sequences available at http://genome.jgi-psf.org/sojae1/sojae1.home.html.
(b) E = exons; I = Introns
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reported applicability of EST-SSRs across closely related
taxa in other organisms as well as Phytophthora [23,36-38].
In the present study, the focus on the breadth of species
(16) prevented the analyses of a wider number of target
regions. However, the same method could be easily
applied to the study of more regions from one or a few
species.

The application of the first method enabled the identifica-
tion of novel SSRs from all the 16 target species with those
of clade 7 and 8 more highly represented (Fig. 3). A higher
proportion of SSRs from species of the clade 7 and 8 was
expected considering that P. sojae and P. ramorum belong
to these two clades [2,3]. In light of this fact, a second
approach to identify a greater number of polymorphic
SSRs from within a more limited range of clade 7 taxa
more closely related to P. sojae was investigated. Sixty P.
sojae SSR candidates were compared by BLAST analysis
against the complete genome sequence of the other two
species yielding 18 SSR candidates which could be aligned

with homologous regions in P. ramorum. However in
none of these 18 candidates (6 exons and 12 introns) was
the SSR maintained in P. ramorum. In four of the more
closely related species (P. alni, P. cambivora, P. europaea
and P. fragariae), however, some of the SSR regions were
conserved (Table 8). In this study the focus was on discov-
ery of SSRs in invasive forest Phytophthora species within
the clade 7a, perhaps a higher success rate in marker dis-
covery would have followed a search amongst the closest
related species in clade 7b (P. sinensis, P. melonis, P. cajanae
and P. vignae) [2]. Although a few SSR markers with
potential were discovered using this approach, it was not
a highly efficient means of identifying new polymorphic
SSR loci and highlights the lack of conservation of SSR
loci, even amongst coding regions within a single ITS
clade of Phytophthora. Some degree of cross-species ampli-
fication has been observed between SSRs in P. infestans
with other Clade 1c taxa and it is therefore likely that a
wider application of this method concentrated on the
closest relatives would be more productive [23].

Table 8: Accession numbers and SSRs for GenBank deposited sequences amplified using primers designed with the second approach 
(Fig. 1B).

Selected
primers(a)

Phytophthora species

P. alni subsp. alni
SCRP2

P. cambivora
SCRP67

P. europaea
SCRP622

P. fragariae
SCRP333

P. sojae
SCRP555

S38–39 EF382833
No SSR

EF382832
No SSR

EF382831
No SSR

EF382830
No SSR

EF382829
(aac)18

S40–41 NS++ EF382801
(aac)4

EF382800
No SSR

EF382799
(aac)4

NS++

S42–43 NS++ EF382798
(ACG)6

EF382797
(acg)6; (agg)5

EF382796
No SSR

EF382795
(ag)21

S44–45 EF382793
(aac)4

EF382792
(aac)4

EF382794
No SSR

NS++ EF382791
(aag)5; (aag)5

S50–51 EF382790
Any SSR

NA+ EF382789
No SSR

EF382788
No SSR

NS++

S52–53 NA+ EF382786
No SSR

EF382787
No SSR

NS++ EF382785
(agg)19

S58–59 EF382784
(aac)4

EF382783
(aac)4

EF382782
No SSR

EF382781
(aac)4

EF382780
(aag)5; (aag)5

S64–65 EF382828
No SSR

EF382827
No SSR

EF382826
No SSR

EF382825
No SSR

EF382824
(ag)14

S68–69 EF382820
(aagg)4

EF382821
No SSR

EF382822
No SSR

EF382831
(aac)4; (aagg)4

EF382819
(ag)14

S70–71 EF382815
No SSR

EF382816
No SSR

EF382817
No SSR

EF382818
No SSR

EF382814
(act)13

S72–73 EF382810
No SSR

EF382811
No SSR

EF382812
No SSR

EF382813
No SSR

EF382809
(aac)12

S74–75 NS++ NS++ EF382807
No SSR

EF382808
No SSR

EF382806
(aat)12

S76–77 EF382802
No SSR

EF382803
No SSR

NS++ EF382805
No SSR

EF382804
(ac)8

(a) = Primers listed in Table 7 and not reported in this table are those that did not produce any reliable sequence.
NA+ = Isolate-primer combinations that did not produce any amplification or produced complex profiles (two or more fragments).
NS++ = Isolate-primer combinations for which single PCR bands were obtained but direct sequencing did not produced reliable results.
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Conclusion
The present study has tested two different methods to gen-
erate SSR markers that can be utilised across a broad range
of Phytophthora species. The final number of identified loci
for any single species may not be sufficient to run a com-
plete population genetics analysis and key studies on the
inter- and intraspecific variation remain. A comprehen-
sive dataset of candidate SSRs from a range of species has
been created (Table 3, 4, 5). The detailed groundwork
needed to amplify these regions from such a diverse col-
lection of species and target regions has been completed
which moves beyond the previous in silico approach to
improve our understanding of the range and sequence
conservation of SSR loci amongst species [27]. In general,
the level of interspecific SSR sequence conservation, even
amongst more closely related species within a single
clade, was low and the method may not be the most effi-
cient means of identifying novel SSR loci. Apart from their
application as molecular markers, determining the abun-
dance and density of SSRs in Oomycetes may help under-
stand whether these sequences have any functional and
evolutionary significance [17]. Furthermore, irrespective
of the microsatellites, some of the amplified regions rep-
resent valuable marker regions for a number of applica-
tions [39]. A single optimal target gene for all Phytophthora
species and assay requirements is unlikely to exist, there-
fore the continued identification and characterization of
new target genes offers new opportunities for detection
and phylogenetic studies [3,40,41].

Methods
Phytophthora isolates and DNA extractions
Twenty-eight isolates (16 Phytophthora species) sourced
from the SCRI culture collection were used in this study
(Table 1). Isolates and species were selected to represent
taxa most relevant to European forestry that also repre-
sented the breadth of Phytophthora diversity defined
according to clades based on ITS sequence analysis [2].
Isolates were stored on oatmeal agar at 5°C and grown on
French bean agar for routine stock cultures.

Total DNA was extracted from pure cultures of Phytoph-
thora according to Schena and Cooke, diluted to 10 ng/μl
and maintained at 5°C for routine amplifications and at -
20°C for long term storage [42].

Analysis of sequences from P. infestans, P. sojae and P. 
ramorum genome projects and scanning for homologous 
SSRs
The predicted protein datasets of P. infestans (from the
NCGR XGI database that was available prior to the Broad
genome sequencing project) and P. ramorum and P. sojae
http://genome.jgi-psf.org/ were screened for SSR loci
using Sputnik (Chris Abaijan http://espressosoft
ware.com/pages/sputnik.jsp). Pairwise BLAST analysis

using the default parameters was used to select loci con-
served in different species combinations [43]. Manual
screening of these loci on the basis of SSR and flanking
region DNA sequence conservation yielded a short-list for
further analysis.

Primer design and amplification conditions
All primers (Table 2 and 7) were designed with the
Primer3 Software set up to generate a Tm of 60°C ± 2, a
GC% between 20 and 80% and a length of 18–26 bp [44].
Primers were purchased from Eurogentec ltd. (Belgium).
Considerable effort was made to obtain successful ampli-
fication of single PCR bands from as many species as pos-
sible. This involved adjustment of MgCl2 concentration
(0.7, 1.0 or 1.7 mM) and annealing temperatures (55 or
58°C) for PCR reactions (Table 3, 4, 5). Furthermore in
some circumstances alternative primers were designed
and tested to amplify the target regions from as many taxa
as possible (Table 2). PCR reactions were performed in a
total volume of 15 μl containing 10 ng of genomic DNA,
1.5 μl of 10× Reaction Buffer (Promega Corporation, WI,
USA), 100 μM dNTPs, 0.7, 1 or 1.7 mM MgCl2, 15 μg BSA,
2 unit of Taq polymerase (Taq DNA polymerase, Promega
Corporation) and 1 μM of primers. PCR amplification
conditions consisted of: 1 cycle of 95°C for 2 min; 40
cycles of 94°C for 30 s, 55 or 58°C for 30 s, 72°C for 60
s; and a final cycle of 72°C for 5 min.

DNA sequencing
The best primers and amplification conditions were iden-
tified for all primer-species combinations and target DNA
was re-amplified in a total volume of 50 μl to provide suf-
ficient amplicon for direct sequencing. Single PCR bands
were purified with the MinElute PCR Purification Kit
(Qiagen Ltd. West Sussex, UK) to remove excess primers
and nucleotides. Sequencing was carried out with the
same primers utilized for the amplification in a dye-termi-
nator cycle-sequencing reaction (FS sequencing kit,
Applied Biosystems, Warrington, UK) and run on an
ABI373 automated sequencer (Applied Biosystems). All
selected PCR fragments were sequenced using both the
forward and the reverse primers.

Sequence analysis and SSRs scanning
The "Sequence Navigator" software (Applied Biosystems)
was utilised to evaluate reliability of sequences and to
compare forward and reverse sequences to create a con-
sensus sequence. Non-reliable sequences in which both
forward and reverse sequences contained doubtful bases
were discarded. All sequences obtained in the present
study were also parsed to a web version of SPUTNIK http:/
/cbi.labri.fr/outils/Pise/sputnik.html, which uses a recur-
sive algorithm to search for repeated patterns of nucle-
otides of length between 2 and 5.
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